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The return to isotropy of homogeneous turbulence without mean velocity gradients is 
attacked by considering changes to be slow relative to turbulence time scales. This 
single assumption permits the problem to be cast as one of finding the form of three 
invariant functions. Examination of limiting behaviour for large Reynolds number and 
small anisotropy , as well as small Reynolds number and arbitrary anisotropy, places 
restrictions on the form of the functions. Realizability conditions (requiring that 
energies be non-negative) reduce the problem to two functions subject to further 
restrictions. A convenient interpolation form is found for the functions, satisfying all 
the restrictions, and it is shown that predictions based on this are in excellent agree- 
ment with all available data. 

1. Introduction 
The question of whether, and how fast, anisotropic (homogeneous, isothermal) 

turbulence without mean velocity gradients returns to isotropy is of fairly long stand- 
ing. Rotta (1951) suggested an approximate form for the pressure-gradient/velocity 
correlation which is responsible for the intercomponent energy interchange; this form 
being proportional to the energy deficit in the component, a return to isotropy with a 
single time constant is predicted. Although there is no analytical proof that this is so, 
there is folk wisdom in the turbulence community that, in the absence of external 
agencies, anisotropy should decrease to avoid a second-law violation. The first meas- 
urements of this were made by Uberoi (1956, 1957), followed by Mills & Corrsin (1959). 
These do indeed show a return to isotropy, although the downstream distance is pain- 
fully short and the indications near the ends of the ducts are (if end effects may be 
excluded, which is not clear) that the return is weak. Admittedly, in Uberoi (1956) and 
Mills & Corrsin (1959) it  was not the major purpose to investigate the return to isotropy 
following the contraction, but rather to examine the effect of the contraction itself. 

We intend to approach the question in a way reminiscent of that in which the school 
of rational mechanics approached the question of constitutive relations for non- 
Newtonian media. Eschewing detailed knowledge of the mechanisms responsible for 
the stress, rational mechanics attempted to determine the mathematical constraints to 
which constitutive relations were subject, and from these to delineate the possible 
forms of these relations. When a relation had been reduced to a small number of 
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invariant functions, a combination of limiting cases and experiment could be used to 
determine these functions, establishing once and for all the behaviour in a range of 
possible situations. Although we know more about the detailed mechanisms of tur- 
bulence than we know about the statistical mechanics of complex media, it  is evident 
that we do not yet know enough to make detailed predictions from first principles of 
such behaviour as the return to isotropy; there is therefore some justification for taking 
a similar approach to turbulence. We shall finish up with a rational construction which, 
although it may be termed semi-empirical, behaves like turbulence in a range of cir- 
cumstances. The concept of viscosity, also, may be shown rationally to describe the 
behaviour of certain media in a range of circumstances, and since the value of the 
viscosity in a particular medium must be determined from experiment, it may be said 
to be semi-empirical. 

There is, in fact, considerable similarity between the return-to-isotropy problem and 
the behaviour of non-Newtonian media. In  a turbulent flow at high Reynolds number, 
the only important stress is the Reynolds stress - ui uj. In  the experiments referred to, 
initially approximately isotropic turbulence is subjected to an axisymmetric contrac- 
tion to produce the anisotropy, which is then allowed to decay. Measurements are 
taken in the principal axes of the Reynolds-stress tensor. Hence the equivalent prob- 
lem in a non-Newtonian medium would be the subjection of material initially in a state 
of isotropic stress to an axisymmetric distortion which producea unequal normal 
stresses which are then allowed to decay to equality. It is, of course, dangerous to 
draw simplistic analogies : turbulence cannot be regarded as a non-Newtonian medium 
for a number of reasons. Chief among these are the fact that it  does not satisfy the 
principles of material indifference or determinism (Lumley 1970a), that there are 
regions near boundaries in time and space where local states are not unique functionals 
of flow variables (Lumley 1970a) and that the turbulent energy, which is responsible 
for the transport phenomena, is maintained by the external energy input. The latter 
makes the mechanics of turbulence evocative of (though in no way analogous to) the 
laminar mechanics of a gas a t  constant density and very low temperature in the sense 
that molecular momentum transport will be substantial only where the temperature 
is substantial owing to shear or some other energy input. Nevertheless, in homogeneous 
turbulent flows many of the techniques and concepts of continuum mechanics can be 
applied, with gratifying results. 

2. Formulation of the problem 

turbulence field without mean velocity as follows : 
We may write the equations of a decaying, anisotropic, homogeneous, isothermal 

- 
The final term in the first line is the dissipation of uiuj stuff to heat. This term is 
observed (Monin & Yaglom 1975, p. 453) to become more isotropic with increasing 
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Reynolds number, in agreement with Kolmogorov’s (1 94 1) hypothesisof local isotropy. 
We shall be continually using the state of infinite Reynolds number as a reference state, 
and it will be convenient for us to add and subtract the form of this term a t  infinite 
Reynolds number as we have done in the second line of (l), incorporating the difference 
(which vanishes at  infinite Reynolds number) in the dimensionless term on the third 
line. E is the total dissipation ~ u ~ , ~ u ~ , ~  of mechanical energy (per unit mass) into heat, 
while q2 = ui ui. The equation for the dissipation, the fourth line of ( l ) ,  has been treated 
elsewhere (Lumley & Khajeh-Nouri 1972); we shall be able to do little to improve that 
treatment here owing principally to a lack of data. It is primarily to $ii that we wish to 
give our attention here. 

Now, we may regard (1) as equations for $ii and $. That is, if we knew the history of 
ui uj and E and the value of the viscosity, we could solve for $ii and $. Hence they may 
be written as functionals as 

- 

- 

where the range of the functionals is over the entire past. We have assumed that there 
is no explicit dependence on time. This is equivalent to assuming that the state of the 
turbulence a t  an arbitrary instant is completely determined by the history of the motion 
relative to that instant; i.e. that the nature of turbulence is the same from day to day, 
or in the words of Francis Clauser, ‘that there is no clock in the (black) box’. If we 
presume that turbulence has a fading memory and introduce the concept of a retarded 
history (Coleman & No11 1961) we may carry out an expansion of these functionals in 
the derivatives of the arguments (and their products) at the current time (Volterra 
1959, p. 25) .  If changes in the state of the system are sufficiently slow relative to the 
memory time of the turbulence (in decaying turbulence the ratio of these scales is 
between Q and 5 depending on definitions), we may neglect higher derivatives and 
terminate the series a t  some point. It is easy to see that, if we keep derivatives no higher 
than the first, these may be incorporated in the time derivative on the left, to give the 
same equations as (1 ), where now $<j and $are functions (not functionals) of the present 
state. Although the time-scale ratio in real turbulence may not be regarded as small, in 
fact the approximations obtained from this assumption will be shown to work remark- 
ably well. This is equally true of the corresponding length-scale assumption (Lumley, 
Zeman & Seiss 1977) when properly applied. 

The expressions in ( 2 )  being now (dimensionless) functions of their arguments, we 
may use dimensional analysis to reduce their form. Each of these functions has eight 
arguments, containing the dimensions of length and time only. Hence six independent 
dimensionless quantities can be formed. We choose to do this in a way which isolates 
the property of anisotropy from the other properties, and form the tensor 

which is dimensionless, has zero trace, and vanishes identically if the turbulence is 
isotropic. Hence it has five independent components. The sixth is formed from the 
trace of the Reynolds stress (the energy) and the dissipation and viscosity: 

6-2 
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FIGURE 1. Plot of limiting values of the second and third invariants for turbulence, which must 
exist within the area delimited by the shading. 

a Reynolds number. The factor of nine reduces this to the classical definition of R, when 
c = u3/l and q2 = 3u2 are substituted. Thus 

We may now apply invariant theory to the functions in (5) (see Lumley 1970b, 
p. 179). That is to say, in writing (2) or ( 5 ) )  we have explicitly indicated all arguments; 
nothing else appears in (1) )  and the only other way in which an argument could be 
introduced would be through the boundary conditions. Here, however, there are none, 
since the field is homogeneous. Thus there are no suppressed, or hidden, arguments in 
(2) or (5); the functions in (5) must therefore be isotropic functions of the indicated 
arguments. This does not mean that the value of the function for a particular value of 
the argument is isotropic, but that the relationship is isotropic; i.e. that any aniso- 
tropy present in the value of the function is induced by anisotropy of the argument, 
and not by the presence of another suppressed argument, such as the direction of a 
magnetic field or the orientation of a nearby boundary. The functional relationship 
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must thus be invariant under the rotation group in three dimensions, and this restricts 
its form. We find 

$ij(b,&) = bijP+y(b&-@ijII), 

p = p(I1, 111, Rz), y = ~(11,111, Ri), 1c. = $PI, 111, RJ,  } ( 6 )  

I1 = bij b,, I11 = bij bjk bki 

(since the trace of g5i j  must vanish). We have now reduced the problem to the determi- 
nation of the form of three invariant functions of the independent invariants of the 
anisotropy tensor and the Reynolds number. 

It is interesting to examine the state of the turbulence as specified by the two in- 
variants I1 and I11 (our notation is slightly unconventional; ordinarily I1 and IIT are 
used for the principal invariants, but these differ by only a numerical factor from our 
definitions). In  figure I we have sketched the possible values of I1 and 111, with the 
corresponding states of the turbulence; all homogeneous turbulence must be found 
within the shaded area. The right and left curved boundaries correspond to axi- 
symmetric turbulence, the right to that in which the axial component is larger than the 
other two and the left to that in which it is smaller. The elbow on the left corresponds 
to the vanishing of the axial component, leaving isotropic two-dimensional turbulence. 
Along the diagonal straight line the turbulence is two-dimensional, until at  the summit 
one of the components has vanished, leaving one-dimensional turbulence; this point 
may also be reached from the right-hand axisymmetric state, corresponding to the 
vanishing of both transverse components. The narrow range of values of I11 suggests 
an approximation in which I11 is taken as a function of 11, lying along the centre of the 
region, although no such approximation has been used here. 

3. Asymptotic behaviour of the invariant functions 
We shall now attempt to extract from various asymptotic states information about 

the behaviour of the invariant functions p and y. We shall delay treatment of the 
invariant function $ until a later section, as the considerations are somewhat different 
and less conclusive. 

In the final period of decay (Batchelor 1956, p. 92) the momentum equation may be 
written as 

This state corresponds to very small Reynolds number, and the consequent negligi- 
bility of all inertial terms. Hence there is no longer any interchange between the com- 
ponents, and each decays at  the same rate. Equation (7) implies that 

- 
uiuj = -2vui,,uj,k = -e(2bij+36ij) ,  RZ+O. (7) 

$ij +- 2bij, Rz --f 0. (8) 

In the particular case of axisymmetric turbulence (which we shall use frequently, since 
all the experiments have been carried out on such turbulence) we have 

0 

and in the h a 1  period we have 
g51# +- 2, Rz + 0. 
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FIQURE 2. Return to isotropy of slightly anisotropic turbulence, as a function of Reynolds 
number, from the data of Comte-Bellot & Corrsin (1966) ; I1 + 0. 
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The value of 2 will arise frequently; it corresponds to zero return to isotropy, in the 
sense that each component maintains a constant ratio to the energy. It appears in (10) 
because of our inclusion of the anisotropic part of the dissipation in q5ci. 

We may now consider the data of Comte-Bellot & Corrsin (1966), who carried out 
extensive experiments on very slightly anisotropic turbulence at various (moderately 
large) Reynolds numbers. The ratio q511/b may be calculated from their ten experiments 
without a secondary contraction. At large Reynolds numbers, we may expect that the 
dependence on Reynolds number will be through the ratio of time scales, proportional 
to R j i ,  in accord with the reasoning in Tennekes & Lumley (1972, p. 89). If we plot 
the ratio q511/b against R i t  as in figure 2,a least-squares fit gives 1.960 + 8.854 Ri&, with 
a correlation coefficient of 0.61. Values of q511/b less than 2 correspond to an increase of 
anisotropy in the absence of external agencies, and although there is no proof, this 
sounds like a second-law violation. Since the accuracy of the data is probably not 
better than 5 yo, we may safely take the line 2.0 + 8.0 RTt obtained by rotating the 
regression line about the centroid to pass through 2.0. Thus 

q511/b -+ 2.0 + 8*O/R/, R, + CO, I1 + 0. (11) 

This suggests that there is no linear return to isotropy a t  infinite Reynolds number; 
i.e. that when viscosity is negligible, the return to isotropy is an entirely nonlinear 
effect and vanishes as the anisotropy vanishes. This may help to explain the evidently 
very weak return to isotropy for small anisotropies. 

We may now undertake an analytical examination of the equations for large Rey- 
nolds number and small anisotropy, using the result (1  1) .  We may write the equation 
for the anisotropy tensor b as 

q 2 b i i / C  = - [(p - 2) bij + y(b& - $aij II)] = - (acj - 2bij ) ,  (12) 

from which we may immediately obtain the equations for the invariants I1 and 111. 
It is most convenient to use a natural time defined by 

dt(e/q2) = dr, 7 - T~ = - 4 In (q2/&), (13) 
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which is monotone, since the energy in these flows decreases continually. In  terms of 
this time, we have 

dII/d7 = - 2[(P - 2) I1 + ~1111, dIII/dr = - 3[(/3 - 2) I11 + &yII2]. (14) 

We may now consider that the turbulence is nearly isotropic, so that II-tO and 
I11 -+ 0, and that the Reynolds number becomes very large. Then, if we presume that 
(1 1) holds and that /3 and y are analytic in the invariants, we may expand 

p-2 ==/3111+p2111+..., y = y,+ylII+y2111+ ... , 115) 

Keeping only the lowest-order terms, we find that dII/dr = - 2y0 111, so that any value 
of yo is inconsistent. That is, for vanishing anisotropy, no matter what sign is chosen 
for yo there is always a sign of I11 which will permit the anisotropy to increase. This is 
again a thermodynamic sort of consideration, and must be taken on faith. In a similar 
way, we find that p1 must be positive. Thus, for the final relaxation of anisotropy a t  
infinite Reynolds number we have 

(16) dIII/dr g - 3/3, I1 111, dII/dr g - 2p1 112 

(so that I1 and I11 both decrease, since I1 is non-negative), which has the solution 

IIcc l/lnt. (17) 

This slow behaviour is quite consistent with the observed weak return to isotropy. 
In  the axisymmetric case, we have 

I1 = 3b2, I11 = $b3 (18) 

and we can write 
&/b 2 +pl I1 + O(b3). 

This form has been suggested before (Lumley & Khajeh-Nouri 1972)) and has been 
objected to on the grounds that the data of Comte-Bellot & Corrsin (1966) did not 
support it (Reynolds 1976). The objection was well founded, since a least-squares 
analysis of the remaining variance in the Comte-Bellot & Corrsin (1966) data using a 
form such as (19) gives a correlation coefficient of only 0.1. We now see, however, that 
the term is logically essential, and we shall find that the coefficient is substantial. 
Schumann & Patterson (1977) fit a form such as (19) to the results of numerical simu- 
lations, and obtain a negative value for pl. We shall show later how this comes about 
(because the rate of return to isotropy at  first increases, but then decreases for large 
anisotropy); we can see here that this is logically impossible, however. 

4. Realizability 
Schumann (1977) has pointed out that, if one component of the energy (in principal 

axes) vanishes, the time derivative of that component must vanish also, in order to 
avoid subsequent negative values of that component. If we cast our equation in 
principal axes, indicating this by the use of Greek subscripts, eigenvalues being indi- 
cated by a single subscript in parentheses, we have 

- 
- ‘ha)  = - 2psaUalp - 2vua, k uz, k -k 8‘- (20) 
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Now, if u, + 0 (which corresponds to b(,) -+ - i), then we must have + - Q (because 
of theinclusionof the anisotropic part of the dissipation term in &).Thus we must have 
$(a)/b(a,+ 2 as b,, + - 4 (which in the axisymmetric case with 111 c 0 corresponds to the 
vanishing of the axial component, for a value of I1 = 4). 

The form (6) is completely general. For our purposes it will be sufficient to assume a 
slightly less general form, namely that q5$j is a polynomial of arbitrary order in bij 
(i.e. of the form a, bo+ a, bl +a2 b2 + .. . , where b$ = b,  b,  . . . b, with n factors, and 
the ad are constants), minus the trace of this polynomial. This introduces relations 
among the coefficients of p and y, but these do not appear to be unduly restrictive, and 
occur only at an order higher than that which we have considered. For example, Po, 
yo and ,8, are unrestricted, but p2 = - y1 is required. Functions such as exp b and In b, 
as usually defined, are of this form. With this assumption, we may write in principal 
axes 

9 (21 )  ) 
(,,) 4:) - - f ( 4 3 ) )  0 0 

h, = 5 2 f ( b ) )  --f(b(ld --f(b(3)) 0 

0 2f(b(,J - - f ( b ( d  -f(bt2d 

wheref(x) is the polynomial function. The realizability condition now requires that, if 
any eigenvalue of b ,  take the value -+, then the corresponding eigenvalue of dii 
must take the value - 8, regardless of the value of the other eigenvalues: 

l?f( - 4) -f(btz,) - Mi - b(2))I = - %. (22 )  

(23) 

This is a functional equation forf(x), which may readily be solved to give 

f(4 = g(z - 3 ) ,  g(x) = - g( - 4, g(+) = + 1.  

The conditions we have previously derived may be expressed as conditions on g(2):  

(24) 1 yo = 0, so that g”(&) = 0, 
&/b -+ 2, El+o3, so that g ’ ( 8 )  = 2. 

These various conditions serve to determine the form of f ( x )  quite precisely. It is 
convenient to write g(x) = 2x+h(z),  from which we find that h(z) = -h(  -x) and 
h(g)  = 0 and conditions (24) give h‘(&) = 0 and h”(Q) = 0. This suggests using a Fourier 
series in sin 2nnx to satisfy the first two requirements. Requirements ( 2 4 )  or the 
equivalent restrictions on h(x )  are infinite Reynolds number requirements; we shall 
have to modify them later for finite Reynolds number. For the moment, let us consider 
the case of infinite Reynolds number. Keeping three terms, which will prove to be more 
than sufficient for our purposes, we find 

g(x) = 22 + a(4 sin 2nx - sin 4nx + sin 6nx), (25)  

where a is an undetermined constant. We cannot determine a from the data directly, 
since the data are all at  quite low Reynolds number. We must instead devise a suitable 
interpolation formula for finite Reynolds number. 

In  the axisymmetric case, we have relation (1  1) .  We can write for the axisymmetric 
case 

A ~ P  = 2rg(+ + m - g(+ - b)1/3b 

and for small b this becomes 
&/b = g’(Q) + . . . . (27) 
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Hence evidently 
h’(4) = 8*O/Rf+ ... 

for large but finite Reynolds numbers. We also have the requirement (10) that h must 
vanish as R, --f 0. The most convenient way of meeting this requirement is to write 

g(x) = 2x + P(R2) h ( 4 ,  (29) 

where P(co) = 1 and P(0) = 0. If we use large Reynolds number forms such as (28) for 
all Reynolds numbers in expression (29), h(x) will increase without bound as Rl goes 
to zero; hence F must go to zero sufficiently rapidly to dominate this term. In  the range 
of R i i  of figure 2, it must differ negligibly from unity. We have found 

P(RJ = exp ( -  DRii) (30) 

(where D is a coefficient to be determined by fitting the data) to be quite satisfactory. 
There is no theoretical justification for this form, but it collapses the data over B range 
of R, of approximately one order of magnitude. 

One final point must be examined. We have shown that yo must vanish a t  infinite 
Reynolds number, when Po is 2. At finite Reynolds number, however, we have (28), and 
the restriction on the value of yo will be different. By examining the equations (14) for 
small values of 11, in the axisymmetric case, we find for positive and negative values of 
I11 respectively 

(31) I a11464 2 - 1, 0 6 I1 < $, 
a11464 < + 1, 0 < I1 < 4, a = yo/6(Po-2) 

from the requirement that I11 should decrease in absolute magnitude. The restriction 
for positive values of I11 is clearly always satisfied if a is positive. That for negative 
values will be satisfied for any positive value of a if I1 is small enough. This implies 
that yo must vanish as Po approaches 2, which we knew, but that it must do so in such 
a way that a remains bounded. The easiest solution is to pick a constant value of a, 
although there is no formal justification for this. Although restrictions (31) are valid 
only for small values of 11, the second restriction would be satisfied for all possible 
values of I1 if we restricted a to 0 < a < 1. Fortunately, the behaviour of the function is 
not terribly sensitive to the value of a ,  and the data are insufficient to distinguish bet- 
ween various values of a. We have picked a compromise value of a = &. Thus we have 

(32) h”(Q) = - 270 = - 12ah’(&) = - 6h’(4). 

A similar discussion for 11 is unnecessary since from (1 1) we have 

dII/dT = - 1611/Rf 

for small anisotropy and large R,, SO that I1 always decreases. 
We find as a general form for h(x), keeping terms no higher than sin 67rx, 

h(x) = 4 4  sin 2nx - sin 4nx + sin 67rx) 

+(2h’(&)/3n)[ax 34/n+ I)sin27rx+(ax 3*/2n-&)sin47rx]. (33) 

Using (28)-(30) and the value a = 8, we have 

g ( x )  = 22 + exp ( - DRYi) [a(4 sin 27rx - sin 4nx + sin 67rx) 

+ 1.70 Ri*( 1 a28 sin 27rx - 0. I 12 sin 4nx)I. (34) 
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FIGURE 3. Form for axisymmetric (111 < 0) flows of the return-to-isotropy function, with the 
data of Uberoi (1957) and Mills & Corrsin (1959) reduced to a common Reynolds number. The 
straight lines correspond to the forms assumed by Lumley (1975) and by Schumann & Patterson 
(1977). 

Values of $ll/b, I1 = +b2 and R, were calculated from published data of Uberoi 
(1957) (using the three flows having the greatest streamwise extent, at three grid 
Reynolds numbers of 3710,6150 and 12 300) and Mills & Corrsin (1959), which gave in 
all 18 sets of points; the values of a and D were optimized to minimize the mean-square 
relative error at  these points, which resulted in D = 7.77 and a = 0.633 with an r.m.s. 
error of 7 yo. 

The points calculated from the data were then reduced t.0 a common Reynolds 
number of R, = 100 by multiplying the observed value of $ll/b by the ratio of q511/b 
calculated using (26) and ( 3 4 )  a t  B, = 100 to that calculated a t  the observed Reynolds 
number. In figure 3 we show the form of $ll/b predicted by (34) for an axisymmetric 
(nega.tive 111) flow for R, = 100 and the data points reduced to this Reynolds number; 
we also show the infinite Reynolds number case (25). Note that the location of the peak 
(and indeed the general formof the curve) is not adjustable; effectively, only the ampli- 
tude has been adjusted empirically. Note that the slope of the curve for infinite Rey- 
nolds number is substantial near the origin, being roughly 2 + 13211 + . . . ; because of 
the decrease in the return rate with increasing anisotropy, however, an approximation 
of this form would very much overpredict. It is easy to see how, on the basis of the data 
points, a larger intercept and smaller slope would appear reasonable. If only flows with 
substantial anisotropy were examined, a negative slope would be quite acceptable, 
corresponding to the back portion of the curve. This probably explains the results of 
Schumann & Patterson (1977). The straight line with negative slope corresponds to 
their results, regressed linearly to R, = 100, while the horizontal straight line is the 
Rotta model used by Lumley (1975). 
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FIGURE 4. Dimensionless decay of dissipation as a function of Reynolds number, from the data 
of Comte-Bellot & Corrsin (1966). 

In  a general flow, in order to use these ideas we should have to find the eigenvalues 
and eigenvectors of the anisotropy tensor, and then form 

bij X$@ = b(a) Xy), 
where g(x) is given by (34). This is tedious, but has the advantage, in addition to 
behaving properly with the Reynolds number and anisotropy, of guaranteeing non- 
negative energies.? 

5. The dissipation equation 
As far as the form of $ is concerned, we are in a much less satisfactory position. 

Again, the data of Comte-Bellot & Corrsin (1966) provide the asymptotic behaviour for 
large Reynolds number and very small anisotropy, giving 

with a correlation coefficient of 0.8 for the Reynolds number variation and a correla- 
tion coefficient of 0.33 for the variation with anisotropy (see figure 4). Hence the former 
is quite reliable, while the latter is uncertain. In  the final period of decay, for very small 
Reynolds number and all anisotropies we find $ = J$ = 2-80. 

The case of one-dimensional turbulence can be solved exactly, since there is no non- 
linear interaction; the equations are thus the same as those for the final period of decay. 
Because of the one-dimensional nature of the spectrum, however, we get $ = 3, 
instead of 9. When we consider the result for the final period, however, and let the 
spectrum become increasingly one-dimensional, we find $ = J$ right up to the point 
of one-dimensionality. This is evidently a singular limit; for any intensity of turbu- 
lence, we can imagine turbulence sufficiently one-dimensional so that the nonlinear 
terms may be neglected, and we shall get the result corresponding to the final period of 
decay. Thus we shall take $ = J .  for I1 = 3 and an arbitrary Reynolds number, 
recognizing that this is a limit from values of I1 < 6. 

Realizability is already satisfied, since the expression is multiplied by €2, so that 8 
will vanish when e vanishes. 

$ = 3.78-2.77Ri*-9.0911+ ... (36) 

t The guarantee is absolute only if the directions of the principal axes do not change with 
time. 
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FIGURE 5. Various quantities computed from the exact simulations of isotropic and axisymmetric 
turbulence of Orszag & Patterson (1972) and Schumann & Herring (1976). The symbols are 
identified in the text. 

The information we need is that which should be supplied by experiment on the 
behaviour of $ at moderate anisotropy and moderate Reynolds number. Unfortu- 
nately, in this respect t'he experiments are very unsatisfactory. The values of l/r are 
essentially the second derivative of the energy, and it is nearly impossible to obtain 
this from scattered data. About all that can be concluded from the data of Uberoi 
(1957) is that l/r is positive. The data of Mills & Corrsin (1959) do not agree even on 
this, suggesting the opposite curvature. Fortunately, the following simple test can be 
applied to grid turbulence data. 

For decaying isotropic turbulence, at any downstream position during the initial 
period of decay the distance from its virtual origin (its effective age) is given by 

nij2/2E" = -Z0, (37) 

where all variables are non-dimensionalized by the mean velocity and the mesh size 
and n is the power in the decay law. Practically speaking, there is little difference 
between the distance from the grid and the distance from the virtual origin, usually 
less than a few mesh lengths (Comte-Bellot & Corrsin 1966). In  going through a mild 
contraction, t'his apparent age should increase somewhat, since the energy will be 
increased, and the dissipation reduced, by the energy input during the contraction. In 
fact, just after the contraction the three flows of Uberoi have values of Z0 which corres- 

streamwise distance approximately three times that a t  which the contraction began, in 
fact half-way to the end of the tunnel. Since the contraction ratio is the same as that for 
the Uberoi flows, this suggests that something is seriously wrong with the data. The 
difficulty does not seem to extend to the values of q511/b, which agree well with the data, 
of Uberoi; a possible explanation is that the latter quantity is determined from b or 
equivalently 11, which is independent of the calibration, whereas the energy itself will 
be influenced by calibration errors. 

A serious effort was made to obtain information from the exact simulations of Orszag 
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& Patterson (1972) and Schumann & Herring (1 976), who have calculated respectively 
isotropic and axisymmetric homogeneous turbulence without mean velocity grad- 
ients. From numerical results kindly supplied by the authors, values of $ were calcu- 
lated, and these are plotted in figure 5 against r = - &In q2 for Orszag & Patterson’s 
isotropic flow and the weakly anisotropic (WA) and strongly anisotropic (SA) flows of 
Schumann & Herring. It may be seen that the calculated values of $ are tending to- 
wards the value suggested by the experiments of Comte-Bellot & Corrsin (1966), but 
slowly. For comparison, the values of the skewness for isotropic flow are indicated on 
the same plot, and it may be seen that this is approaching its asymptotic value much 
more rapidly. The values of $ do not begin to rise until the skewness has essentially 
reached its final value, indicating that spectral transfer has been established. Also 
indicated on the same plot are the values of I1 for the two anisotropic flows; it may be 
seen that the anisotropy is essentially gone by the time $ is near the values appropriate 
to real turbulence. 

Orszag & Herring (private communication) have indicated that the slow approach 
of $ to its asymptotic value is probably due to the use of an initial spectrum of the form 
k4 exp ( - k2), which takes a long time to evolve to a self-preserving form. They indicate 
that a spectrum of the form kexp ( - k) evolves much more rapidly, although differ- 
encing errors appear to be introduced by this spectrum, requiring a ( 64)3 code rather 
than a (32)3 code. This explanation is in agreement with what is known of spectral 
dynamics: $ is essentially the imbalance between vortex stretching by the fluctuating 
strain rate and molecular transport (Tennekes & Lumley 1972, p. 91), and hence is 
controlled by the large wavenumber end of the spectrum. It should take about one 
decay time (r = 1)  to set up an equilibrium high wavenumber spectrum, since this is the 
time required for energy to traverse the spectrum. It is hoped that a t  some time in the 
not too distant future more realistic simulations will be available which will be of some 
use in determining the form of $. 

We also tried to use these calculations to obtain values of &/b. If values before the 
skewness peak are excluded, only the strong anisotropy case provides interesting values 
of 11, and these all lie below 3 x 10-2; the corresponding values of &/b follow the shape 
of the curve in figure 3, but lie between the R, = 100 and Rl = 00 curves and hence are 
too high, since Rl for these calculations is about 20. Evidently, the setting-up of an 
equilibrium spectrum, which increases the decay substantially (giving low values of 
$), also increases the return to isotropy. 

Thus we are a t  a loss to determine the behaviour of $ more precisely than can be 
done from (36) and the various asymptotic cases. The not veryreliable indication of (36) 
that small anisotropy decreases the rate of destruction of E ,  resulting in higher E levels 
and hence faster decay, makes physical sense and works well in other flows (Zeman 
1975). What should happen a t  larger levels of anisotropy is not clear, beyond the 
fact that II. evidently should not change sign. We shall consequently suggest a rather 
conservative interpolation formula, devoid of extreme behaviour. 

We can write 
$ = + (3.78 -32) G(I1) exp (- ERyt),  138) 

where G(0) = 1 and G ( $ )  = 0. If we write, for small 11, G(I1) = 1 -cII, then for large 
Reynolds number and small anisotropy we have 

$ 3.78 + (3.78 -I$) ( - E R $ - c I I )  + ... . (39) 
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FIGURE 6. Solid lines are those of Uberoi (1956, figure 5). Points are our predictions. 
RM = U ,  Mlv  = 3710, M = 2 in., contraction = 4:i. 

FIGURE 

I f  we require agreement with (36), we must have E = 2.83 and c = 9.28. The form of 
G(I1) presents a problem owing to our lack of information, and we cannot do much 
more than take a smooth, monotone form like 1 - 0.337 In (1  + 27.511), which goes to 
zero at Q and has the required slope and value a t  the origin. Hence the final form 
suggested is 

$ = J++0*980exp( -2.83Rii) [1-0.3371n(1+27.511)]. (40) 

6. Results and discussion 
From (34) and (40), all the flows of Uberoi (1956, 1957) and of Mills & Corrsin (1959) 

were predicted using a simple forward-difference scheme and taking values after the 
contraction as the initial conditions. Values of E were selected to reproduce the initial 
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slope of the energy. The results are shown in figures 6-12. The continuous lines are the 
curves faired through the data by the authors, while the points are our calculations. 
Note that the flows of figures 6,9, 10 and 12 had been used to optimize values of a and 
D. However, the ability to reproduce the shape of the curves, and to reproduce all the 
curves without regard to the Reynolds number, is still significant. The predictions are 
seen to be essentially within experimental accuracy, with the exception of the flow of 
Uberoi (1  956). These measurements are somewhat pathological, in the sense that they 
are the only measurements ever presented which show the streamwise and cross-stream 
energies becoming equal after a finite extent of duct. From a number of points of view 
this appears to be unlikely, so that it is in a sense encouraging that our calculations 
indicate a finite anisotropy at the end of the duct. 

Reynolds (1974) has suggested that q5$i cannot depend on b:j because of the anisotropy 
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in response this would induce. That is, considering axisymmetric turbulence, we have 
found that q511/b is not symmetric for (moderate) positive and negative values of b;  
for small values of b, q511/b is symmetric, from (19). It can be seen, however, that for 
moderate values of b it cannot be symmetric, since it must vanish for b = - Q and for 
b = + Q .  Turbulence which is almost one-dimensional is dynamically quite different 
from turbulence which is almost two-dimensional, and there is no reason to expect 
symmetry. 

I n  the same work, Reynolds (1974) has presented an argument equivalent to the 
statement that q5ii cannot be simply a function of b,, since b, is even in u6 whereas 
p,iuj must be odd in ui. The remark is not correct, however. Inspection of the Navier- 
Stokes equations shows that reflexion of the co-ordinate system (which is the only 

- 
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FIGURE 12. Solid lines are those of Mills & Corrsin (1959, figure 5b). Points a.re our predictions. 
RM = U ,  M / Y  = 7420, M = 1 in., contraction = 4 :  1. 

correct way to effect a reversal of the velocity field) r eve r ses~ ,~  (as it does also ui,i ui); 
that is, the direction of the gradient must reverse also in mirror turbulence. Thus 
p,iuj  does not reverse, and hence this does not provide an argument against its being 
represented as a function of b,. 

Schumann & Patterson (1977) calculate values of y ,  assuming it to be constant, and 
find that it must change sign with the sign of 111. This is consistent with our finding that 
yo must vanish at infinite Reynolds number. Although y is not antisymmetric, for the 
reasons stated above, we may expect that the symmetric part will be relatively small. 

- 

This work has evolved over a considerable period and has benefited from the criticism 
of many persons, particularly our colleagues a t  The Pennsylvania State University. 
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